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1 Introduction

Due to the vast development of computer technology, we easily encounter with
enormous amount of data collected from diverse sources. That has lead to a
great demand for innovative analytic tools for complicated data, where tra-
ditional statistical methods can no longer be feasible. Similarly, modern data
visualization techniques must face the same situation and provide adequate
solutions accordingly.

High dimensionality is always an obstacle to the success of data visualiza-
tion. Besides the problem of high dimensionality, exploration of information
and structures hidden in complicated data can be very challenging. The para-
metric models, on one hand, are often inadequate for complicated data; on the
other hand, the traditional nonparametric methods can be far too complex to
have a stable and affordable implementation due to the “curse of dimension-
ality”. Thus, developing new nonparametric methods for analyzing massive
data sets is a highly demanding task. With the recent success in many ma-
chine learning topics, kernel methods (e.g., Vapnik, 1995) certainly provide
us powerful tools for such analysis. Kernel machines facilitate a flexible and
versatile nonlinear analysis of data in a very high dimensional (often infinite
dimensional) reproducing kernel Hilbert space (RKHS). Reproducing kernel
Hilbert spaces have rich mathematical theory as well as topological and geo-
metric structures to allow probabilistic interpretation and statistical inference.
They also provide a convenient environment suitable for massive computation.

For many classical approaches, statistical procedures are carried out di-
rectly on sample data in Euclidean space R

p. By kernel methods, data are first
mapped to a high dimensional Hilbert space, via a certain kernel or its spec-
trum and classical statistical procedures will act on these kernel-transformed
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data afterward. Kernel transformations provide us a new way of specifying
“distance” or “similarity” metric between different elements.

After preparing the raw data in kernel form, standard statistical and/or
mathematical softwares are ready to use for exploring nonlinear structures of
data. For instance, we can do nonlinear dimension reduction by kernel prin-
cipal component analysis (KPCA), which can be useful for constructing high
quality classifiers as well as raising new angles of view for data visualization.
That is, we are able to view the more complicated (highly nonlinear) structure
of the massive data without suffering from the computational difficulties of
building complex models. Many multivariate methods can also be extended
to cover the highly nonlinear cases through kernel machine framework.

In this article, by combining the classical methods of multivariate analysis,
such as PCA, canonical correlation analysis (CCA) and cluster analysis, with
kernel machines, we introduce their kernelized counterparts for more versatile
and flexible data visualization.

2 Kernel machines in the framework of an RKHS

The goal of this section is twofold. First, it serves as an introduction to some
basic theory of RKHS relevant for kernel machines. Secondly, it provides a
unified framework for kernelizing some classical linear methods such as PCA,
CCA, support vector clustering (SVC), etc. to allow for nonlinear structure
exploration. For further details, we refer the reader to Aronszajn (1950) for
the theory of reproducing kernels and reproducing kernel Hilbert spaces and
Berlinet and Thomas-Agnan (2004) for their usage in probability, statistics
and machine learning. Listed below are some definitions and basic properties.

• Let X ⊂ R
p be the sample space of data, and here it serves as an index set.

A real symmetric function κ : X ×X �→ R is said to be positive definite if
for any positive integer m, any sequence of numbers {a1, a2, . . . , am ∈ R}
and points {x1, x2, . . . , xm ∈ X}, we have

∑m
i,j=1 aiajκ(xi, xj) ≥ 0.

• An RKHS is a Hilbert space of real valued functions on X satisfying the
property that all evaluation functionals are bounded linear functionals.
Note that an RKHS is a Hilbert space of pointwise defined functions,
where the H-norm convergence implies pointwise convergence.

• To every positive definite kernel κ on X × X there corresponds a unique
RKHS, denoted by Hκ, of real valued functions on X . Conversely, to ev-
ery RKHS H there exists a unique positive-definite kernel κ such that
〈f(·), κ(x, ·)〉H = f(x),∀f ∈ H,∀x ∈ X , which is known as the repro-
ducing property. We say that this RKHS admits the kernel κ. A positive
definite kernel is also named a reproducing kernel.

• For a reproducing kernel κ satisfying the condition
∫
X×X κ2(x, u)dxdu <

∞, it has a countable discrete spectrum given by
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κ(x, u) =
∑

q

λqφq(x)φq(u), or κ :=
∑

q

λqφq ⊗ φq for short. (1)

The main idea of kernel machines is first to map the data in an Euclidean
space X ⊂ R

p into an infinite dimensional Hilbert space. Next, a certain
classical statistical notion, e.g., say PCA, is carried out in this feature Hilbert
space. Such a hybrid model of classical statistical notion and a kernel machine
is nonparametric in nature, but its data fitting uses the underlying paramet-
ric notion, e.g., PCA finds some leading linear components. The extra effort
involved is the preparation for kernel data before feeding them into some clas-
sical procedures. Below we will introduce two different but isomorphic maps
to embed the underlying Euclidean sample space into a feature Hilbert space.
Consider the transformation

Φ : x �→ (
√

λ1φ1(x),
√

λ2φ2(x), . . . ,
√

λqφq(x), . . . )′ . (2)

Let Z := Φ(X ), named the feature space. The inner product in Z is given by

Φ(x) · Φ(u) =
∑

q

λqφq(x)φq(u) = κ(x, u) . (3)

The kernel trick (3) of turning inner products in Z into kernel values allows
us to carry out many linear methods in the spectrum-based feature space Z
without explicitly knowing the spectrum Φ itself. Therefore, it makes possible
to construct nonlinear (from the Euclidean space viewpoint) variants of linear
methods. Consider another transformation

γ : X �→ Hκ given by γ(x) := κ(x, ·) , (4)

which brings a point in X to an element in Hκ. The original sample space X
is thus embedded into a new sample space Hκ. The map is called Aronszajn
map in Hein and Bousquet (2004). We connect these two maps (2) and (4)
via J : Φ(X ) �→ γ(X ) given by J (Φ(x)) = κ(x, ·). Note that J is a one-to-one
linear transformation satisfying

‖Φ(x)‖2
Z = κ(x, x) = ‖κ(x, ·)‖2

Hκ
= ‖γ(x)‖2

Hκ
.

Thus, Φ(X ) and γ(X ) are isometrically isomorphic, and these two feature
representations (2) and (4) are equivalent in this sense. Since they are equiva-
lent, mathematically there is no distinction between them. However, for data
visualization, there does exist a difference. As the feature map (2) is not ex-
plicitly known, there is no way of visualizing the feature data in Z. In this
article, for data visualization purpose, data or extracted data features are put
in the framework of Hκ. We will use the feature map (4) for the later KPCA
and kernel canonical correlation analysis (KCCA). As for the SVC, the data
cluster will be visualized in the original sample space X , thus, we will use the
spectrum-based feature map (2) for ease.
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Given data {x1, . . . , xn}, let us write, for short, the corresponding new
data in the feature space Hκ by

γ(xj) := γj (∈ Hκ) . (5)

As can be seen later, via this new data representations (4) and (5), statistical
procedures can be solved in this kernel feature space Hκ in a parallel way
using existing algorithms of classical procedures such as PCA and CCA. This
is the key spirit of kernelization. The kernelization approach can be regarded,
from the original sample space viewpoint, as a nonparametric method, since it
adopts a model via kernel mixtures. Still it has the computational advantage of
keeping the process analogous to a parametric method, as its implementation
involves only solving a parametric-like problem in Hκ. The resulting kernel
algorithms can be interpreted as running the original parametric (often linear)
algorithms on kernel feature space Hκ. For the KPCA and KCCA in this
article, we use existing PCA and CCA codes on kernel data. One may choose
to use codes from Matlab, R, Splus or SAS. The extra programming effort
involved is to prepare data in an appropriate kernel form.

Let us discuss another computational issue. Given a particular training
data set of size n and by applying the idea of kernel trick in (3), we can gen-
erate an n × n kernel data matrix according to a chosen kernel independent
of the statistical algorithms to be used. We then apply the classical algorithm
of our interest, which only depends on the dot product, to the kernel ma-
trix directly. Now the issue is, when the data size is huge, generating the full
kernel matrix will become a stumbling stone due to the computational cost
including CPU time and memory space. Moreover, the time complexity of
the algorithm might depend on the size of this full kernel matrix. For exam-
ple, the complexity of SVM is O(n3). To overcome these difficulties Lee and
Mangasarian (2001a) proposed the “reduced kernel” idea. Instead of using
the full square kernel matrix K, they randomly chose only a small portion of
columns from K to form a thin rectangular kernel matrix, called a reduced
kernel. The use of partial columns corresponds to the use of partial kernel
bases in Hκ, while keeping the full rows means that all data points are used
for model fitting. The idea of reduced kernel is applied to the smooth sup-
port vector machine (Lee and Mangasarian, 2001a, 2001b), and according to
their numerical experiments, the reduced kernel method can dramatically cut
down the computational load and memory usage without sacrificing much the
prediction accuracy. The heuristic is that the reduced kernel method regular-
izes the model complexity through cutting down the number of kernel bases
without sacrificing the number of data points to enter model fitting. This idea
also has been successfully applied to the smooth ε-insensitive support vector
regression (Lee, Hsieh and Huang, 2005), which is a penalized ε-insensitive
least squares fit and results in an adaptive ridge-type support vector regres-
sion estimator. For theoretical study of the reduced kernel method we refer
the reader to Lee and Huang (2006). Comparison study of the empirical be-
havior of eigenvalues and eigenvectors of the full kernel versus reduced kernel
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can also be found therein. Also note that the feature representation (4) con-
veniently allows the related optimization problems to be solved in its primal
form as compared with in the dual form. The primal optimization has sev-
eral advantages and they are especially prominent for large scale problems.
The primal optimization directly optimizes the objective function and of-
ten the solution can be obtained in only a couple of gradient steps, and it
can easily accommodate the reduced kernel approach or other low-rank ap-
proximation approach for large scale problems. Although, the kernel machine
packages are conveniently available and included in many softwares, such as
R, Matlab, etc., this reduced kernel method allows us to utilize the kernel
machines with less computational efforts especially for large data sets. In this
article, the reduced kernel is adopted in conjunction with the algorithms for
KPCA and KCCA. Some reference papers and Matlab code are available at
http://dmlab1.csie.ntust.edu.tw/downloads.

3 Kernel principal component analysis

To deal with high dimensional data, methods of projection pursuit play a key
role. Among various approaches, PCA is probably the most basic and com-
monly used one for dimension reduction. As an unsupervised method, it looks
for an r-dimensional linear subspace, with r < p carrying as much information
(in terms of data variability) as possible. Operationally, it sequentially finds
a new coordinate axis each time, which assumes the “best” direction to view
the data, and along which data can own the most variance. Combination of
all the new coordinate axes, the so called principal components, forms the
basis set for the r-dimensional subspace. It is often the case that a small num-
ber of principal components is sufficient to account for most of the relevant
data structure and information. They are sometimes called factors or latent
variables of the data. For the classical PCA, we try to find the leading eigen-
vectors by solving an eigenvalue problem in the original sample space. We
refer the reader to Mardia, Kent and Bibby (1979) and Alpaydin (2004) for
further details. Due to its nature, PCA can only find linear structures in data.
If we are interested in not only linear features, but also in nonlinear ones, it
is natural to ask what we can do and how we do it? Inspired by the success of
kernel machines, Schölkopf, Smola and Müller (1998) and Schölkopf, Burges
and Smola (1999) raised the idea of kernel principal component analysis. In
their papers, they apply the idea of PCA to the feature data in Z via the
feature map (2). Their method allows to analyze higher-order correlations be-
tween input variables. In practice, the transformation needs not be explicitly
specified and the whole operation can be done by computing the dot products
in (3). In this article, our formulation of KPCA is in terms of its equivalent
variant in the framework of RKHS Hκ given by (4).

Actually, given any algorithm that can be expressed solely in terms of
dot products (i.e., without explicit usage of the variables Φ(x) themselves),
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the kernel method enables us to extend to nonlinear versions of this given
algorithm. See, e.g., Aizerman, Braverman and Rozonoer (1964) and Boser,
Guyon and Vapnik (1992). This general fact is well known to the machine
learning community, and is gradually gaining popularity in statistical society,
too. Here we give some examples of applying this method in the domain of
unsupervised learning, to obtain a nonlinear form of PCA. Some data sets from
UCI Machine Learning Benchmark data archives are used for illustration.

3.1 Computation of KPCA

Before getting into KPCA, we briefly review the computational procedure
of classical PCA. Let X ∈ R

p be a random vector with covariance matrix
Σ := Cov(X). To find the first principal component is to find a unit vector
w ∈ R

p such that the variance of projection of X along w is maximized, i.e.,

max
w

w′Σw subject to ‖w‖ = 1 . (6)

This can be rewritten as a Lagrangian problem:

max
α,w

w′Σw − α(w′w − 1) , (7)

where α is the Lagrange multiplier. Taking derivative with respect to α and
w and setting them to zero, we then solve for α and w. Denote the solution
by α1 and w1. They must satisfy Σw1 = α1w1, and w1

′w1 = 1. Therefore, w1

is obtained by finding the eigenvector associated with the leading eigenvalue
α1. For the second principal component, we look for a unit vector w2 which
is orthogonal to w1 and maximizes the variance of the projection of X along
w2. That is, in terms of a Lagrangian problem, we solve for α2, w2 and β in
the following optimization formulation

max
α2,β,w2

w′
2Σw2 − α2(w′

2w2 − 1) − β(w′
1w2) . (8)

Using similar procedure, we are able to find the leading principal components
sequentially.

Assume for simplicity that the data {x1, . . . , xn} are already centered to
their mean, then the sample covariance matrix is given by Σn =

∑n
j=1 xjx

′
j/n.

By applying the above sequential procedure to the sample covariance Σn, we
can obtain the empirical principal components.

For KPCA using the feature representation (4), mapped data in the feature
space Hκ are {γ1, . . . , γn}. The sample covariance (which is also known as a
covariance operator in Hκ) is given by

Cn :=
1
n

n∑
j=1

(γj − γ̄) ⊗ (γj − γ̄), (9)
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where f ⊗g is a linear operator defined by (f ⊗g)(h) := 〈g, h〉Hκf for f, g, h ∈
Hκ. Applying similar arguments as before, we aim to find the leading eigen-
components of Cn. That is to solve for h in the following optimization problem

max
h∈Hκ

〈h, Cnh〉Hκ
subject to ‖h‖Hκ

= 1 . (10)

It can be shown that the solution is of the form h =
∑n

j=1 βjγj ∈ Hκ, where
βj ’s are scalars. As

〈h, Cnh〉Hκ
=

n∑
i,j=1

βiβj〈γi, Cnγj〉Hκ
= β′

K

(
In − 1n1′

n

n

)
Kβ/n ,

and ‖h‖2
Hκ

= β′
Kβ, where K = [κ(xi, xj)] denotes the n × n kernel data

matrix. The optimization problem can be reformulated as

max
β∈Rn

β′
K

(
In − 1n1′

n

n

)
Kβ/n subject to β′

Kβ = 1 . (11)

The Lagrangian of the above optimization problem is

max
α∈R,β∈Rn

β′
K

(
In − 1n1′

n

n

)
Kβ/n − α(β′

Kβ − 1) ,

where α is the Lagrange multiplier. Taking derivatives with respect to β’s and
setting them to zero, we get

K

(
In − 1n1′

n

n

)
Kβ/n = αKβ, or

(
In − 1n1′

n

n

)
Kβ = nαβ . (12)

This leads to the eigenvalues-eigenvectors problem for
(
In − 1n1′

n

n

)
K. Denote

its largest eigenvalue by α1 (note that the multiplicative factor n is absorbed
into the eigenvalue) and its associated eigenvector by β1, then the correspond-
ing first kernel principal component is given by h1 =

∑n
j=1 β1jγj in the feature

space Hκ. We can sequentially find the second and the third principal compo-
nents, etc. From (12) we have that βk, k = 1, 2, . . . , are orthogonal to 1n and
then the normalization β′

kKβk = 1 is equivalent to β′
k

(
In − 1n1′

n

n

)
Kβk = 1.

Thus, βk is normalized according to αkβ′
kβk = 1.

For an x ∈ R
p and its feature image γ(x) ∈ Hκ, the projection of γ(x)

along the kth eigen-component of Cn is given by

〈γ(x), hk〉Hκ = 〈γ(x),
n∑

j=1

βkjγj〉Hκ ,=
n∑

j=1

βkjκ(xj , x) , (13)

where βk is the kth eigenvector of
(
In − 1n1′

n

n

)
K. Therefore the projection of

γ(x) onto the dimension reduction linear subspace spanned by the leading r
eigen-components of Cn is given by



8 Y-c I. Chang, Y-J Lee, H-K Pao, M-H Lee, S-Y Huang


 n∑

j=1

β1jκ(xj , x), . . . ,
n∑

j=1

βrjκ(xj , x)


 ∈ R

r .

Let us demonstrate the idea of KPCA through a few examples. There are
three data sets in this demonstration, the synthesized “two moon” data set,
the “Pima Diabetes” data set, and the “Image segmentation” data set.

Example 1 First, we compare the PCA and KPCA using a synthesized “two
moons” data set shown in Figure 1. The original data set is in (a) located in
a 2-D space. We can observe that the two classes of data can not be well sep-
arated along any one-dimensional component. Therefore, by applying PCA,
we are not going to see good separation along the first principal coordinate
axis. In the histogram of (b1), the horizontal axis is the first principal co-
ordinate from the PCA and vertical axis is the frequency. As we can see, it
gives a big portion of overlapping between two classes. On the other hand,
a kernelized projection can provide an alternative solution. In the histogram
of (b2), the horizontal axis is the first principal coordinate from the KPCA
(with polynomial kernel of degree 3) and the vertical axis is the frequency.
Still, the KPCA does not give a good separation. However, in the histogram
of (b3), the KPCA using radial basis function (RBF, also known as Gaussian
kernel) with σ = 1 gives a good separation. If the PCA or KPCA will be
used as a preprocessing step before a classification task, clearly, the KPCA
using radial basis function with σ = 1 is the best choice among them. Their
ROC curves are shown in (c), with the area under curve (AUC) reported as
APCA = 0.77, AKPCA(Poly) = 0.76 and AKPCA(RBF) = 0.91. Obviously, the
KPCA with RBF (σ = 1) has clear advantage on the separation between two
groups over the classical PCA and the KPCA using polynomial kernel.

Example 2 In this example we use the Pima Diabetes data set from UCI
Machine Learning data archives. The reduced kernel method is adopted by
randomly sampling 20% of column vectors from the full kernel matrix. For
reduced kernel PCA, assume K̃ is the underlying reduced kernel data matrix of
size n×m, where n is the data size and m is the reduced set size (i.e., columns
set size). The KPCA using reduced kernel is a singular value decomposition
problem to extract the leading right and left singular vectors β̃ and β:

(
In − 1n1′

n

n

)
K̃β̃ = αβ, normalized to αβ̃′β̃ = 1 and αβ′β = 1. (14)

In this data set, there are nine variables including the Number of times preg-
nant, Plasma glucose concentration (glucose tolerance test), Diastolic blood
pressure (mm Hg), Triceps skin fold thickness (mm), 2-Hour serum insulin
(mu U/ml), Body mass index (weight in kg/(height in m)2), Diabetes pedi-
gree function, Age (years), and Class variable (test for diabetes) – positive
and negative. For demonstration purpose, we use the first eight variables as
input measurements and the last variable as the class variable. The PCA and
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Fig. 1. PCA and KPCA applied to a synthesized “2 moons” data set. (a) original
data, (b1) PCA result, (b2) KPCA with polynomial kernel of degree 3, (b3) KPCA
with Gaussian kernel, σ = 1. In each of these histograms (b1)-(b3), the horizontal
axis is the principal coordinate from either the PCA or KPCA and the vertical axis
is the frequency. (c) gives their ROC curves with Area Under Curve reported as
APCA = 0.77, AKPCA(Poly) = 0.76 and AKPCA(RBF) = 0.91.

KPCA using both the polynomial kernel and the Gaussian kernel are car-
ried out on the entire input measurements. In Figures 2-4, the red and blue
denote the positive and negative samples, respectively. Figure 2 shows the
data scatter projected onto the subspace spanned by the first three principal
components produced by the classical PCA. Similarly, Figure 3 are plots of
data scatter projected onto the subspace spanned by the first three principal
components obtained by the KPCA using a polynomial kernel with degree
3 and scale parameter 1. Figures 4(a)-4(c) are pictures of projections with
principal components produced by Gaussian kernels with σ2 = 1/2, 1/6 and
1/10, respectively. Comparing Figure 2 obtained by the PCA with others, it
is clearly that the KPCA provides some extra information of data, which can
not be seen in the classical PCA.
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Fig. 2. PCA based on original input variables.

Fig. 3. KPCA with polynomial kernel of degree=3, scale=1.

Example 3 In the third series (Figure 5), we apply the PCA and KPCA
to the Image Segmentation data set (also from UCI Machine Learning data
archives), which consists of 210 data points, each with 19 attributes and clas-
sified into 7 classes. The KPCA with RBF gives a better separation of classes
than the PCA, as can be seen in (a1) & (b1). With all 7 classes plotted in
one graph, it is hard to clearly see the effect of KPCA. Therefore, we further
provide figures retaining only “brickface” and “path”. We can clearly see the
separation produced by the KPCA but not by the PCA.
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(a) σ2 = 1/2

(b) σ2 = 1/6

(c) σ2 = 1/10

Fig. 4. KPCA with Gaussian kernels.
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Fig. 5. PCA vs. KPCA for the “image segmentation” data set. Some limited number
of outliers are omitted in the figures.

Remark 1. The choice of kernel and its window width are still an issue in
general kernel methodology. There are some works on choice of kernel for
classification and supervised learning problems, but it is still lack of guide-
lines in clustering and non-supervised learning problems. In this experimental
study, we merely aim to show that the nonlinear information of data can
be obtained through the kernel methods with only minor efforts. The kernel
method can really help to dig out nonlinear information of the data, which
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can be otherwise difficult or impossible to see by the classical linear PCA in
the original input space.

4 Kernel canonical correlation analysis

The description and classification of relation between two sets of variables
have been a long interest to many researchers. Hotelling (1936) introduced
the canonical correlation analysis to describe the linear relation between two
sets of variables having a joint distribution. It defines a new coordinate sys-
tem for each of the sets in a way that the new pair of coordinate systems are
optimal in maximizing correlations. The new systems of coordinates are sim-
ply linear systems of the original ones. Thus, the classical CCA can only be
used to describe linear relations. Via such linear relations it finds only linear
dimension reduction subspace and linear discriminant subspace, too. Moti-
vated from the active development and the popular and successful usage of
various kernel machines, there has emerged a hybrid approach of the classical
CCA with a kernel machine (Akaho, 2001; Bach and Jordan, 2002), named
kernel canonical correlation analysis. The KCCA was also studied recently by
Hardoon, Szedmak and Shawe-Taylor (2004) and others.

Suppose the random vector X of p components has a probability distribu-
tion P on X ⊂ R

p. We partition X into

X =
[

X(1)

X(2)

]
,

with p1 and p2 components, respectively. The corresponding partition of X
is denoted by X1 ⊕ X2. We are interested in finding relations between X(1)

and X(2). The classical CCA is concerned with linear relations. It describes
linear relations by reducing the correlation structure between these two sets
of variables to the simplest possible form by means of linear transformations
on X(1) and X(2). It finds pairs (αi, βi) ∈ R

p1+p2 in the following way. The
first pair maximizes the correlation between α′

1X
(1) and β′

1X
(2) subject to the

unit variance constraints Var(α′
1X

(1)) = Var(β′
1X

(2)) = 1, and the kth pair
(αk, βk), which are uncorrelated with the first k− 1 pairs, maximizes the cor-
relation between α′

kX(1) and β′
kX(2), and again subject to the unit variance

constraints. The sequence of correlations between α′
iX

(1) and β′
iX

(2) describes
only the linear relations between X(1) and X(2). There are cases where linear
correlations may not be adequate for describing the “associations” between
X(1) and X(2). A natural alternative, therefore, is to explore for nonlinear
relations. Kernel methods can provide a convenient way for nonlinear gener-
alization. Let κ1(·, ·) and κ2(·, ·) be two positive definite kernels defined on
X1 ×X1 and X2 ×X2, respectively. Let X denote the data matrix given by
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X =




x1

...
xn




n×p

.

Each data point (as a row vector) xj = (x(1)
j , x

(2)
j ) in the data matrix is

transformed into a kernel representation:

xj �→ γj = (γ(1)
j , γ

(2)
j ) , (15)

where

γ
(i)
j = (κi(x

(i)
j , x

(i)
1 ), . . . , κi(x

(i)
j , x(i)

n )), j = 1, . . . , n, and i = 1, 2 .

Or, by matrix notation, the kernel data matrix is given by

K = [ K1 K2 ] =




γ
(1)
1 γ

(2)
1

...
...

γ
(1)
n γ

(2)
n




n×2n

, (16)

where Ki = [κi(x
(i)
j , x

(i)
j′ )]nj,j′=1, i = 1, 2, are the full kernel matrices for data

{x(i)
j }n

j=1. The representation of xj by γj = (γ(1)
j , γ

(2)
j ) ∈ R

2n can be regarded
as an alternative way of recording data measurements with high inputs.

The KCCA procedure consists of two major steps:

(a) Transform the data points to a kernel representation as in (15) or (16) in
matrix notation.

(b) The classical CCA procedure is acting on the kernel data matrix K. Note
that some sort of regularization is necessary here to solve the associated
spectrum problem of extracting leading canonical variates and correlation
coefficients. Here we use the reduced kernel concept stated in the RKHS
section and in Example 2. Only partial columns are computed to form
reduced kernel matrices, denoted by K̃1 and K̃2. The classical CCA pro-
cedure is acting on the reduced kernel matrix [K̃1 K̃2].

As the KCCA is simply the classical CCA acting on kernel data, existing code
from standard statistical packages are ready for use. In the example below we
use Matlab m-file “canoncorr”, which implements the classical CCA, on kernel
data.

Example 4 We use the data set “pen-based recognition of hand-written dig-
its” from UCI Machine Learning data archives for visual demonstration of
nonlinear discriminant using KCCA. We use the 7494 training instances for
explanatory purpose. For each instance there are 16 input measurements (i.e.,
xj is 16-dimensional) and a corresponding group label yj from {0, 1, 2, . . . , 9}.
A Gaussian kernel with the window width (

√
10S1, . . . ,

√
10S16) is used to
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prepare the kernel data, where Si’s are the coordinate-wise sample covari-
ances. A reduced kernel of size 300 equally stratified over 10 digit groups is
used and serves as the K̃1 in step (b) of the KCCA procedure. We use yj , the
group labels, as our K2 (no kernel transformation involved). Precisely,

K2 =




Y ′
1
...

Y ′
n




n×10

, Y ′
j = (0, . . . , 1, 0, . . . ) ,

where Yj is a dummy variable for group membership. If yj = i, i = 0, 1, . . . , 9,
then Yj has the entry 1 in the (i + 1)th place and 0 elsewhere. Now we
want to explore for the relations between the input measurements and their
associated group labels using CCA and KCCA. The training data are used
to find the leading CCA- and KCCA-found variates. Next 20 test samples
from each digit-group are drawn randomly from the test set 4. Scatter plots
of test data projected along the leading CCA-found variates (Figure 6) and
the leading KCCA-found variates (Figure 7) are given below. Different groups
are labeled with distinct digits. It is clear that the CCA-found variates are
not informative in group labels, while the KCCA-found variates are.

5 Kernel cluster analysis

Cluster analysis is categorized as unsupervised learning method, which tries
to find the group structure in an unlabeled data set. A cluster is a collection
of data points which are “similar” to points in the same cluster, according to
certain criterion, and are “dissimilar” to points belonging to other clusters.
The simplest clustering method is probably the k-means (can hybrid with
kernel machine, or stands alone). Given a predetermined number of clusters
k, the k-means algorithm will proceed to group data points into k clusters
by (1) placing k initial centroids in the space, (2) assigning each data point
to the cluster of its closest centroid, (3) updating the centroid positions and
repeat the steps (1) and (2) until some stopping criterion is reached (see
MacQueen, 1967). Despite its simplicity, the k-means algorithm has some
disadvantages in certain ways. First, a predetermined k is necessary for the
algorithm input, and different k can lead to dramatically different results.
Secondly, suboptimal results can occur for certain initial choices of centroid
seeds. Thirdly, algorithm may not be appropriate for some data distribution,
where the metric is not uniformly defined, i.e., the idea of “distance” has
different meanings in different regions or for data belonging to different labels.

Here we address these issues by introducing a different clustering approach,
namely, the support vector clustering, which allows hierarchical clusters with
4 The test set has 3498 instances in total with average around 350 instances for

each digit. For clarity of plots and to avoid excess ink, we use only 20 test points
per digit.



16 Y-c I. Chang, Y-J Lee, H-K Pao, M-H Lee, S-Y Huang

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1 11
1

11

1

1111 1 1

1

1

1 1
11

1
2 222

22
22

2

2
22

2
2

2

2
2

2

2
2

3 33

3
3

3

3 33 3
3

3
3

3 33
3 3

3

3

4

444

4

4

4
4

4 444
4

4
4

4
4

4

4
4

5

555

5

5 5
5

5

5

5
5

5

5

5
5

5

5

5

56
6

666
6

6

6

66

6

6

6

6

6
6 6

6

6

6 7
7

7

7

7

7

7 777

7
7

7
7

7
77

7

7

7

8

8

88
8

8
8

8
8

8
8

88
8

8 888 8

8

9

99

99

999
9 9

999 9
9

99
9
9
9

0

0

0 0

0

0
0

0

0

0

0
0

00

0

0

0
0

0
0

1st canonical variates

2
n

d
 c

a
n

o
n

ic
a

l v
a

ri
a

te
s

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

11
1

1

1

1

1

1
1

1

1

1

1

11
1

1

1
1

12

2

2 2
2
2

2
22

2
2

2 22
2

2

2

2
22

333

33
333

3
3

3
3

33
3

3

33

3

3

4

4

4
44

4
44

4
4

4

4

4
4

4
4 4 4

4

4 5
5

5

5 5

5
5

5

5
5

5

5

5
5

5

5

5

5

5

5

6
6 66

6

6
66

6
6

6

6
66 6

6

6
6

6
6

77

7 7
7

7

77 77
7

7
7

7
77

7

7

77

8

8
8

8 88
8

8
8

8 8

8
8

8
88

8
8

8 8

9

9
9

9

9
99
9

99
99

9
9

9

999
9

9

0
00

0

00
0

0 0
0

00

0
0 00 0

0 0
0

2nd canonical variates

3
rd

 c
a

n
o

n
ic

a
l v

a
ri
a

te
s

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1

1
1

1

1

1

1

1
1

1

1

1
1

11

1

1

1 1

1
2

222

2

2

2

2

2
2 2

2
2

2
2

22 222

3

3

3 3
3

3

3

3

3

3
3

3

3

3

3
3

3
3

3

3

4

4

4
44

4

4

4

4
4

4

4

4

44

4

4

4

4 4

555

5
5

5

55

5

5

5

5

5
5

5
5

5

5

5

5
6

6

66 6

6

6

6

6

6

6

6
6

6

6
6

6

6

6
6

77

77 7

7

77
77 7

7

7
7

77

77

77

8

8

8

8

8
8

8

8

8
8

8

8
8

8

8

8

8

8

88

9

99
9 9

9
9

9
9

9

9
9

9
9

9 99
9 9

9

0

0

0

0

0

0

0

0 0
0 00

0

0
00

0

0

0

0

3rd canonical variates

4
th

 c
a

n
o

n
ic

a
l v

a
ri
a

te
s

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

11
1

1

11
1

11

1

11
1

1

1

1

1

11

1 2
2
22

2 2
2

2
2

2
2

2

2
222

2
2

2
2

3
3 3

33

3
3

3

33

33

3

3
3

3 3

3

3 3

4

4

4 4
4

4

44
4

4
4

4
4

44 44 4
4

4
5
5
5

5
5

5

55

5

5

55 5

5

5

5

5

5

5

5
6 6

6

6
6

6
66

6

6
6

66

6

66

6

6
6

6

7
7

7
7

7
7

77

7
7

7
7

7

7

7

7

7

77
7 8

8

8

8

8 8

8

8

8

8

8

8

8

88
8

8
8

8

8 9

9 9

99

9
9

9

9 9

9 9
9

9

9

99

9
9

9

0 0
0

0 00 0
0
0

0

0
0 0

0
0

0
00 0

0

4th canonical variates

5
th

 c
a

n
o

n
ic

a
l v

a
ri
a

te
s

Fig. 6. Scatter plot of pen-digits over CCA-found variates.

versatile clustering boundaries. Below we briefly describe the idea of SVC
by Ben-Hur, Horn, Siegelmann and Vapnik (2001). The SVC is inspired from
support vector machines and kernel methods. In SVC, data points are mapped
from the data space X to a high dimensional feature space Z by a nonlinear
transformation (2). This nonlinear transformation is defined implicitly by a
Gaussian kernel with 〈Φ(x), Φ(u)〉Z = κ(x, u). The key idea of SVC is to
find the smallest sphere in the feature space, which encloses the data images
{Φ(x1), . . . , Φ(xn)}. That is, we aim to solve the minimization problem:

min
a∈Z,R

R2, subject to ‖Φ(xj) − a‖2
Z ≤ R2,∀j , (17)

where R is the radius of an enclosing sphere in Z. To solve the above opti-
mization problem the Lagrangian is introduced. Let

L := R2 −
n∑

j=1

(R2 − ‖Φ(xj) − a‖2)βj , (18)

where βj ≥ 0 are the Lagrange multipliers. By differentiating L with respect
to the primal variables R and a respectively and setting the derivatives equal
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Fig. 7. Scatter plots of pen-digits over KCCA-found variates.

to zero, we have

n∑
j

βj = 1 and a =
n∑
j

βjΦ(xj) . (19)

Moreover, the corresponding Karush-Kuhn-Tucker complementarity condi-
tions are

(R2 − ‖Φ(xj) − a‖2)βj = 0,∀j . (20)

Combining (19) and (20), we can eliminate the primal variables R and a and
get the following dual problem:

max
β

W (β) :=
n∑

j=1

βj‖Φ(xj) − Φ̄‖2
Z

s.t. Φ̄ :=
∑

j βjΦ(xj),
∑

j βj = 1 and βj ≥ 0 .

(21)

That is, the SVC algorithm aims to find a weighting scheme β so that the
weighted data spread W (β) appears as far apart as possible.
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As R is the radius of the enclosing sphere, corresponding pre-images of the
enclosing sphere consist of points C := {x : ‖Φ(x)− Φ̄‖2

Z = R2}. For x ∈ C we
have

‖Φ(x) − Φ̄‖2
Z = κ(x, x) − 2

n∑
j=1

βjκ(xj , x) +
n∑

j,j′=1

βjβj′κ(xj , xj′) = R2.

Or equivalently

C := {x :
n∑

j=1

βjκ(xj , x) = ρ} , (22)

where ρ = (κ(0, 0) +
∑n

j,j′=1 βjβj′κ(xj , xj′) − R2)/2. When the enclosing
sphere is mapped back to the data space X , it forms a set of probability
contours. These contours are used as cluster boundaries and data points inside
each contour are assigned into the same cluster. The SVC forms contours by
kernel mixture (22) with mixing coefficients βj being solved from (21). Note
that Φ̄ is a weighted centroid in the feature space and

∑n
j=1 βj‖Φ(xj) − Φ̄‖2

Z
can be regarded as a weighted measure of data dispersion in the feature space.
In other words, the SVC algorithm finds mixing coefficients to make data
dispersion measure as large as possible in the feature space Z, while it draws
the kernel mixture contours in the original data space X to form clusters. The
set C defines the cluster boundaries. Data points lying on the boundaries are
called support vectors. Note that the nonlinear transformation Φ is implicitly
defined by a Gaussian kernel, κ(xj , xj′) = e−q‖xj−xj′‖2

, q > 0. (Normalizing
constant for κ is not relevant for cluster analysis and is dropped for simplicity.)
A larger value of q corresponds to a smaller window width and leads to more
resulting clusters in the analysis.

Unlike k-means algorithm, where the number of clusters k has to be pre-
scribed by users, the window width in SVC can vary continuously and results
in hierarchical clusters. The number of clusters depends on the window width
of the Gaussian kernel. Decreasing the width leads to an increasing number
of clusters. Also, different from the procedure of k-means, no initial centroids
are required as the algorithm input. Therefore, a deterministic result, inde-
pendent from initial condition can be expected. The SVC also has the ability
to deal with outliers by employing the slack variables. It allows some data
points stay outside the enclosing sphere in the feature space. This is same as
the “soft margin” idea in support vector machines. With the introduction of
slack variables, the optimization problem becomes

min
a,R,ξ

R2 + C

n∑
j=1

ξj , subject to ‖Φ(xj) − a‖2
Z ≤ R2 + ξj , ξj ≥ 0,∀j . (23)

It is straightforward to derive the corresponding dual problem:
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max
β

W (β) :=
n∑

j=1

βj‖Φ(xj) − Φ̄‖2
Z

s.t. Φ̄ :=
∑

j βjΦ(xj),
∑

i βj = 1 and 0 ≤ βj ≤ C .

(24)

As 〈Φ(xj), Φ(xj′)〉Z = κ(xj , xj′), the dual problem can be rewritten as a
simple quadratic programming problem:

max
β

W (β) := −
∑

j

∑
j′ βjβj′κ(xj , xj′)

s.t.
∑

j βj = 1 and 0 ≤ βj ≤ C .
(25)

Solutions for β’s are not unique, unless the kernel matrix K = [κ(xj , xj′)] is of
full rank. At an optimal solution to problem (25), if 0 < βj < C, then ξj = 0
and the corresponding data point xj and its image Φ(xj) lie, respectively, on
the cluster boundaries and the surface of the sphere in Z. Such a point is
called a support vector (SV). The image of a point xj with ξj > 0 lies outside
the sphere. This will imply the corresponding βj = C. Such an xj is called a
bounded support vector (BSV). Data points can be classified into three types:
SVs lie on the cluster boundaries, BSVs are outside the boundaries, and the
rest points lie inside clusters. Since 0 ≤ βj ≤ C and

∑n
j=1 βj = 1 there is

no BSV when C ≥ 1. Moreover, 1/(nC) is an upper bound on the fraction of
BSVs.

In a 3-dimensional space, we can easily visualize the clusters once the
boundaries are drawn. But in a data space of higher dimension, it is hard to
picture and determine which data points are inside a specific cluster. Thus,
we need an algorithm for cluster assignment. Ben-Hur et al. (2001) introduce
the adjacency matrix for cluster assignment. Let R(y) := ‖Φ(y)− Φ̄‖Z be the
feature distance of Φ(y) to the data centroid Φ̄. Denote the adjacency matrix
by A = [Ajj′ ], where Ajj′ = 1 stands for the pair (j, j′) being in the same
cluster and Ajj′ = 0 for otherwise. We need only the upper triangular part of
the A matrix. For j < j′

Ajj′ =
{

1 : if R(y) ≤ R,∀y on the line segment connecting xj and xj′ ,
0 : otherwise.

This definition is based on a geometric observation by Ben-Hur et al. For a
given pair of data points, say xj and xj′ , belonging to different clusters, any
path that connects them must exit from the enclosing sphere. Therefore, such
a path contains a segment of points y such that R(y) > R. Checking all points
on a line segment is impossible. In practice, Ben-Hur et al. suggest to use 10
to 20 uniformly distributed points for checking whether R(y) > R or not.
Once the adjacency matrix A is formed, the clusters can be defined as the
connected components of the graph induced by A. This procedure will leave
the BSVs unclustered as outliers. One may either assign them to the nearest
clusters or leave them alone. We will illustrate an example to show how the
SVC works and the effect of the window width of the Gaussian kernel.
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Fig. 8. 200 points in a 3-dimensional space.

Example 5 We synthesize 200 points in R3 space, among which 80 points are
in the upper half sphere of the ball with radius 1.6 and center at the origin.
The rest 120 points are generated from three areas of XY plane and then
mapped into the lower half sphere of the ball. We vary the parameter q from
1 to 7 and the number of resulting clusters changes from 1 to 4. When q = 1,
all 200 points are in one cluster, and when q = 6.7, we have 4 clusters which
is consistent with the way data being generated. The results are depicted in
Figure 8. The cluster membership is represented in different colors and “◦”
indicates support vectors.
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